Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(8)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38673748

RESUMO

Metabolic disorders (MDs), including dyslipidemia, non-alcoholic fatty liver disease, diabetes mellitus, obesity and cardiovascular diseases are a significant threat to human health, despite the many therapies developed for their treatment. Different classes of bioactive compounds, such as polyphenols, flavonoids, alkaloids, and triterpenes have shown therapeutic potential in ameliorating various disorders. Most of these compounds present low bioavailability when administered orally, being rapidly metabolized in the digestive tract and liver which makes their metabolites less effective. Moreover, some of the bioactive compounds cannot fully exert their beneficial properties due to the low solubility and complex chemical structure which impede the passive diffusion through the intestinal cell membranes. To overcome these limitations, an innovative delivery system of phytosomes was developed. This review aims to highlight the scientific evidence proving the enhanced therapeutic benefits of the bioactive compounds formulated in phytosomes compared to the free compounds. The existing knowledge concerning the phytosomes' preparation, their characterization and bioavailability as well as the commercially available phytosomes with therapeutic potential to alleviate MDs are concisely depicted. This review brings arguments to encourage the use of phytosome formulation to diminish risk factors inducing MDs, or to treat the already installed diseases as complementary therapy to allopathic medication.


Assuntos
Doenças Metabólicas , Compostos Fitoquímicos , Humanos , Doenças Metabólicas/tratamento farmacológico , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Compostos Fitoquímicos/administração & dosagem , Disponibilidade Biológica , Animais , Terapias Complementares/métodos , Polifenóis/química , Polifenóis/farmacologia , Polifenóis/administração & dosagem , Fitossomas
2.
Pharmaceutics ; 15(4)2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-37111552

RESUMO

The poor water solubility of natural antioxidants restricts their bioavailability and therapeutic use. We aimed to develop a new phytosome formulation with active compounds from extracts of ginger (GINex) and rosehips (ROSAex) designed to increase their bioavailability, antioxidant and anti-inflammatory properties. The phytosomes (PHYTOGINROSA-PGR) were prepared from freeze-dried GINex, ROSAex and phosphatidylcholine (PC) in different mass ratios using the thin-layer hydration method. PGR was characterized for structure, size, zeta potential, and encapsulation efficiency. Results showed that PGR comprises several different populations of particles, their size increasing with ROSAex concentration, having a zeta potential of ~-21mV. The encapsulation efficiency of 6-gingerol and ß-carotene was >80%. 31P NMR spectra showed that the shielding effect of the phosphorus atom in PC is proportional to the amount of ROSAex in PGR. PGR with a mass ratio GINex:ROSAex:PC-0.5:0.5:1 had the most effective antioxidant and anti-inflammatory effects in cultured human enterocytes. PGR-0.5:0.5:1 bioavailability and biodistribution were assessed in C57Bl/6J mice, and their antioxidant and anti-inflammatory effects were evaluated after administration by gavage to C57Bl/6J mice prior to LPS-induced systemic inflammation. Compared to extracts, PGR induced a 2.6-fold increase in 6-gingerol levels in plasma and over 40% in the liver and kidneys, in parallel with a 65% decrease in the stomach. PGR treatment of mice with systemic inflammation increased the sera antioxidant enzymes paraoxonase-1 and superoxide dismutase-2 and decreased the proinflammatory TNFα and IL-1ß levels in the liver and small intestine. No toxicity was induced by PGR either in vitro or in vivo. In conclusion, the phytosome formulation of GINex and ROSAex we developed resulted in stable complexes for oral administration with increased bioavailability, antioxidant and anti-inflammatory potential of their active compounds.

3.
Front Pharmacol ; 13: 1003684, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36299891

RESUMO

Cardiac pathological hypertrophy is the major risk factor that usually progresses to heart failure. We hypothesized that extracellular vesicles (EVs), known to act as important mediators in regulating physiological and pathological functions, could have the potential to reduce the cardiac hypertrophy and the ensuing cardiovascular diseases. Herein, the effects of mesenchymal stem cell-derived extracellular vesicles (EV-MSCs) on cardiac hypertrophy were investigated. EVs were isolated from the secretome of human adipose tissue-derived stem cells (EV-ADSCs) or bone marrow-derived stem cells (EV-BMMSCs). Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) were stimulated with AngII and TGF-ß1, in absence or presence of EVs. The results showed that exposure of hiPSC-CMs to AngII and TGF-ß1 generated in vitro model of hypertrophic cardiomyocytes characterized by increases in surface area, reactive oxygen species production, protein expression of cardiac-specific biomarkers atrial natriuretic factor, migration inhibitory factor, cTnI, COL1A1, Cx43, α-SMA and signalling molecules SMAD2 and NF-kBp50. The presence of EV-ADSCs or EV-BMMSCs in the hiPSC-CM culture along with hypertrophic stimuli reduced the protein expressions of hypertrophic specific markers (ANF, MIF, cTnI, COL1A1) and the gene expressions of IL-6 molecule involved in inflammatory process associated with cardiac hypertrophy and transcription factors SMAD2, SMAD3, cJUN, cFOS with role in cardiomyocyte hypertrophic response induced by AngII and TGF-ß1. The EV-ADSCs were more effective in reducing the protein expressions of hypertrophic and inflammatory markers, while EV-BMMSCs in reducing the gene expressions of transcription factors. Notably, neither EV-ADSCs nor EV-BMMSCs induced significant changes in cardiac biomarkers Cx43, α-SMA and fibronectin. These different effects of stem cell-derived EVs could be attributed to their miRNA content: some miRNAs (miR-126-3p, miR-222-3p, miR-30e-5p, miR-181b-5p, miR-124-3p, miR-155-5p, miR-210-3p hsa-miR-221-3p) were expressed in both types of EVs and others only in EV-ADSCs (miR-181a-5p, miR-185-5p, miR-21-5p) or in EV-BMMSCs (miR-143-3p, miR-146a-5p, miR-93-5p), some of these attenuating the cardiac hypertrophy while others enhance it. In conclusion, in hiPSC-CMs the stem cell-derived EVs through their cargo reduced the expression of hypertrophic specific markers and molecules involved in inflammatory process associated with cardiac hypertrophy. The data suggest the EV potential to act as therapeutic mediators to reduce cardiac hypertrophy and possibly the subsequent cardiovascular events.

4.
Biomolecules ; 10(4)2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32326376

RESUMO

Atherosclerosis is the main process behind cardiovascular diseases (CVD), maladies which continue to be responsible for up to 70% of death worldwide. Despite the ongoing development of new and potent drugs, their incomplete efficacy, partial intolerance and numerous side effects make the search for new alternatives worthwhile. The focus of the scientific world turned to the potential of natural active compounds to prevent and treat CVD. Essential for effective prevention or treatment based on phytochemicals is to know their mechanisms of action according to their bioavailability and dosage. The present review is focused on the latest data about phenolic compounds and aims to collect and correlate the reliable existing knowledge concerning their molecular mechanisms of action to counteract important risk factors that contribute to the initiation and development of atherosclerosis: dyslipidemia, and oxidative and inflammatory-stress. The selection of phenolic compounds was made to prove their multiple benefic effects and endorse them as CVD remedies, complementary to allopathic drugs. The review also highlights some aspects that still need clear scientific explanations and draws up some new molecular approaches to validate phenolic compounds for CVD complementary therapy in the near future.


Assuntos
Anti-Inflamatórios/uso terapêutico , Doenças Cardiovasculares/tratamento farmacológico , Terapias Complementares , Epigênese Genética , Lipídeos/química , Fenóis/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Epigênese Genética/efeitos dos fármacos , Humanos , Fenóis/química
5.
Mol Nutr Food Res ; 63(19): e1900029, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31295384

RESUMO

SCOPE: To assess the impact of ginger extract (GIN) in stimulating the production of quality HDL and the cholesterol efflux in the small intestine (SI), key processes in the management of hyperlipidemia (HL)-induced hepatic steatosis, and atherosclerosis. METHODS AND RESULTS: Three groups of hamsters are used: (i) N, fed standard diet, (ii) HL, fed high-fat diet for 21 weeks, and (iii) HL-GIN, HL treated with GIN for the last 5 weeks of diet. Apolipoprotein A-I (apoA-I), malondialdehyde-apoA-I (MDA-apoA-I), paraoxonase1 (PON1), and myeloperoxidase (MPO) are measured in plasma and SI. ATP-binding cassette A1 transporter (ABCA1), ABCG5/G8, liver X receptor α/ß (LXRα/ß), peroxisome proliferator-activated receptor γ (PPARγ), and sirtuin1 (SIRT1) are assessed in the SI. Results show that in HL plasma, GIN decreases MDA-apoA-I, MPO/PON1 ratio and increases HDL-cholesterol/total cholesterol. In HL-SI, GIN decreases MDA-apoA-I and MPO, increases ApoA-I, PON1, and ABCA1, and restores cholesterol efflux disturbed by HL (SIRT1-LXRα/ß-PPARγ-ABCG8). GIN administration is associated with the reduction of the aortic valves lipid-deposits. CONCLUSION: In HL conditions, GIN stimulates the functional HDL production by restoring apoA-I quality and quantity through inhibition of the oxidative stress, and increases cholesterol efflux in the SI. These effects are associated with the restoration of SIRT1-LXRα/ß-PPARγ pathway.


Assuntos
Colesterol/metabolismo , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/metabolismo , Lipoproteínas HDL/biossíntese , Extratos Vegetais/farmacologia , Zingiber officinale , Animais , Valva Aórtica/metabolismo , Colesterol/análise , Cricetinae , Expressão Gênica/efeitos dos fármacos , Hiperlipidemias/metabolismo , Lipídeos/sangue , Receptores X do Fígado/genética , Masculino , Mesocricetus , Estresse Oxidativo/efeitos dos fármacos , PPAR gama/genética , Sirtuína 1/genética
6.
Clin Chem Lab Med ; 45(9): 1133-9, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17635078

RESUMO

BACKGROUND: Genetic variation at the apolipoprotein A-V locus, recently discovered proximal to the APOA1/C3/A4 gene cluster, is associated with elevated triglyceride concentrations, a risk factor for atherosclerosis. METHODS: The goal of our study was to determine the association of two apolipoprotein A-V (APOA5) gene polymorphisms in a group of urban Romanian subjects with the prevalence of the metabolic syndrome. For this purpose, we assayed -1.131T>C and c.56C>G polymorphisms for 279 subjects divided into three groups: a control group, a metabolic syndrome group and a cardiovascular disease group. Then we correlated the minor allele frequencies with body mass index and biochemical parameters. RESULTS: We obtained higher frequency for -1.131C compared to c.56G alleles, both mainly distributed in overweight subjects. Body mass index and triglyceride levels were higher in -1.131C allele carriers in metabolic syndrome patients, but were not significantly different in c.56G carriers compared to those with the native gene. Metabolic syndrome -1.131C homozygotes presented lower high-density lipoprotein cholesterol and higher glucose levels compared to subjects with the native gene. Total cholesterol, low-density lipoprotein cholesterol and insulin were not different between -1.131C or c.56G allele carriers and those with the native gene. CONCLUSIONS: Our results demonstrate an independent risk for -1.131T>C APOA5 gene polymorphisms in the development of metabolic syndrome.


Assuntos
Apolipoproteínas A/genética , Apolipoproteínas A/fisiologia , Aterosclerose/genética , Síndrome Metabólica/genética , Família Multigênica , Obesidade/genética , Polimorfismo Genético , Alelos , Apolipoproteína A-V , Doenças Cardiovasculares/genética , Colesterol/metabolismo , Frequência do Gene , Variação Genética , Homozigoto , Humanos , Insulina/metabolismo , Fatores de Risco , Triglicerídeos/metabolismo
7.
Biochem Biophys Res Commun ; 319(2): 397-404, 2004 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-15178420

RESUMO

Overexpression of human APOA5 in mice results in dramatically decreased plasma triglyceride levels. In this study we explored the mechanism underlying this hypotriglyceridemic effect. Initially we found that triglyceride turnover was faster in hAPOA5 transgenic mice compared to controls, and this strongly correlated with increased LPL activity in postheparin plasma. Furthermore, we show that in vitro recombinant apoAV interacts physically with lipoprotein lipase and significantly increased its activity. We show that both apoB and apoCIII are decreased in hAPOA5 transgenic mice indicating a decrease in VLDL number. To further investigate the mechanism of hAPOA5 in a hyperlipidemic background, we inter-crossed hAPOA5 and hAPOC3 transgenic mice. We found a marked decrease in VLDL triglyceride and cholesterol, as well as apolipoprotein B and CIII levels. These data indicated that apoAV induces a decrease in VLDL size by activating lipolysis and an increase of VLDL clearance. In a postprandial state, the normal triglyceride response found in wild-type mice was significantly reduced in hAPOA5 transgenics. In addition, we demonstrated that in response to this fat load in hAPOA5xhAPOC3 mice, apoAV, but not apoCIII, was redistributed from primarily HDL to VLDL. This shift of apoAV in VLDL appears to limit the increase of triglyceride by activating the lipoprotein lipase.


Assuntos
Apolipoproteínas/genética , Triglicerídeos/sangue , Animais , Apolipoproteína A-V , Apolipoproteína C-III , Apolipoproteínas A , Apolipoproteínas B/metabolismo , Apolipoproteínas C/genética , Apolipoproteínas C/metabolismo , VLDL-Colesterol/sangue , Gorduras na Dieta/administração & dosagem , Ativação Enzimática , Ensaio de Imunoadsorção Enzimática , Humanos , Lipólise , Lipase Lipoproteica/metabolismo , Camundongos , Camundongos Transgênicos , Período Pós-Prandial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...